Dynamic Effects of Modalized Questions

Valentin D. Richard

ILLC, Universiteit van Amsterdam, The Netherlands LORIA, Université de Lorraine, Nancy, France

> Amsterdam Colloquium 18 December 2024

Introduction OOO	Data 000	Inquisitive existential modality	Stack of local contexts
Topic of this talk			

Modalized question :

(1) Which student might come tonight?

Modalized question :

(1) Which student might come tonight?

Introduction	Data	Inquisitive existential modality	Stack of local contexts
000	000	000	0000

1 Introduction

2 Data

- 3 Inquisitive existential modality
- 4 Stack of local contexts

E. J			
Introduction	Data ●00	Inquisitive existential modality	Stack of local contexts

Exhaustivity and presupposition weakening

(2) SITUATION : I am hiding some part of English word FO 🖑 M It has 4 or 5 letters.

ntroduction	Data ●00	Inquisitive existential modality	Stack of local contexts

Exhaustivity and presupposition weakening

- (2) SITUATION : I am hiding some part of English word FO (1) M It has 4 or 5 letters.
- (3) a. Which letter is hidden here?

 ^{presup} → There exists exactly one (token) letter which is hidden.
 - b. Either "A" (for FOAM)
 - c. Or "R" (for FORM)
 - Strongly exhaustive
 - Global uniqueness presupposition

ntroduction	Data ●OO	Inquisitive existential modal	ity Stack of local contexts

Exhaustivity and presupposition weakening

- (2) SITUATION : I am hiding some part of English word FO (1) M It has 4 or 5 letters.
- (3) a. Which letter is hidden here?

 ^{presup} → There exists exactly one (token) letter which is hidden.
 - b. Either "A" (for FOAM)
 - c. Or "R" (for FORM)
 - Strongly exhaustive
 - Global uniqueness presupposition
- (4) a. Which letter could be hidden here? (HIRSCH et SCHWARZ 2019) presup → (For all worlds,) It might be that exactly one letter is hidden.
 - b. "A"
 - c. "R"
 - d. "A and/or R"
 - Question about the content of the English lexicon
 - Mention-some
 - Local uniqueness presupposition

Introduction 000	Data o●o	Inquisitive existential modality	Stack of local contexts
Modal subordina	ation		

- (5) a. A : Which^u university might want to host the next ACL conference ? (*might* > *which* reading)
 - b. B : ?I don't know, but it_u needs a lot of support.

Introduction	Data o●o	Inquisitive existential modality	Stack of local contexts
Modal subord	nation		

- (5) a. A : Which^u university might want to host the next ACL conference ? (*might* > *which* reading)
 - b. B : ?I don't know, but it_u needs a lot of support.
 - c. B : I don't know, but it_u would need a lot of support.
 - Is externally static
 - but allows modal subordination

Define \Diamond in Dynamic Inquisitive Semantics :

- weakening exhaustivity
- weakening uniqueness presupposition
- externally static
- allowing modal subordination

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Kripkean exist	ential modality		

Intensional :

$$[\Diamond \varphi]_{int} = \{ w \in W \mid \exists w'. w R w' \land w' \in [\![\varphi]\!]_{int} \} = \mathsf{R}^{-1}([\![\varphi]\!])$$
(1)

Introduction	Data	Inquisitive existential modality	Stack of local contexts
000	000	●OO	
Kripkean existenti	al modality		

Accessibility relation R Intensional :

$$[\![\Diamond\varphi]\!]_{\text{int}} = \{ w \in W \mid \exists w'. \ w \ R \ w' \land w' \in [\![\varphi]\!]_{\text{Int}} \} = \mathsf{R}^{-1}([\![\varphi]\!])$$
(1)

Inquisitive Semantics : $\llbracket \varphi \rrbracket$ is a downward-closed set of information states *s*

Introduction	Data	Inquisitive existential modality	Stack of local contexts
000	000	●○○	
Kripkean exis	tential modality		

Intensional :

$$[\![\Diamond\varphi]\!]_{\mathsf{int}} = \{ w \in W \mid \exists w'. \ w \ R \ w' \land w' \in [\![\varphi]\!]_{\mathsf{Int}} \} = \mathsf{R}^{-1}([\![\varphi]\!])$$
(1)

Inquisitive Semantics : $[\![\varphi]\!]$ is a downward-closed set of information states *s* CIARDELLI 2016's inquisitive existential modality :

$$\llbracket \Diamond \varphi \rrbracket_{\mathsf{IngBK}} = \{ s \subseteq W \mid \forall w \in s. \ \exists s' \in \llbracket \varphi \rrbracket_{\mathsf{IngBK}}. \ \exists w'. \ w \ R \ w' \land w' \in s' \}$$
(2)

(4)

InqBK problem : ◊ is an inquisitive plug

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts
Kripkean existe	ential modality		

Intensional :

$$[\![\Diamond\varphi]\!]_{\text{int}} = \{ w \in W \mid \exists w'. \ w \ R \ w' \land w' \in [\![\varphi]\!]_{\text{Int}} \} = \mathsf{R}^{-1}([\![\varphi]\!])$$
(1)

Inquisitive Semantics : $[\![\varphi]\!]$ is a downward-closed set of information states *s* CIARDELLI 2016's inquisitive existential modality :

$$\llbracket \Diamond \varphi \rrbracket_{\mathsf{InqBK}} = \{ s \subseteq W \mid \forall w \in s. \exists s' \in \llbracket \varphi \rrbracket_{\mathsf{InqBK}}. \exists w'. w \ R \ w' \land w' \in s' \}$$
(2)

$$\llbracket \Diamond \varphi \rrbracket_{\mathsf{MinqB}} = \{ s \subseteq W \mid \exists s' \in \llbracket \varphi \rrbracket_{\mathsf{MinqB}}, \forall w \in s, \exists w', w \ R \ w' \land w' \in s' \}$$
(3)

(4)

InqBK problem : ◊ is an inquisitive plug

Solution : inverting the quantifiers

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts
Kripkean existentia	al modality		

Intensional :

$$[\![\Diamond\varphi]\!]_{\text{int}} = \{ w \in W \mid \exists w'. w \ R \ w' \land w' \in [\![\varphi]\!]_{\text{Int}} \} = \mathsf{R}^{-1}([\![\varphi]\!])$$
(1)

Inquisitive Semantics : $[\![\varphi]\!]$ is a downward-closed set of information states *s* CIARDELLI 2016's inquisitive existential modality :

$$\llbracket \Diamond \varphi \rrbracket_{\mathsf{InqBK}} = \{ s \subseteq W \mid \forall w \in s. \ \exists s' \in \llbracket \varphi \rrbracket_{\mathsf{InqBK}}. \ \exists w'. \ w \ R \ w' \land w' \in s' \}$$
(2)

$$[\Diamond \varphi]_{\mathsf{MInqB}} = \{ s \subseteq W \mid \exists s' \in \llbracket \varphi \rrbracket_{\mathsf{MInqB}}, \forall w \in s, \exists w', w \ R \ w' \land w' \in s' \}$$
(3)

$$= \{ s \subseteq W \mid \exists s' \in \llbracket \varphi \rrbracket_{\mathsf{MinqB}}, s \subseteq \mathsf{R}^{-1}(s') \}$$
(4)

- InqBK problem : ◊ is an inquisitive plug
- Solution : inverting the quantifiers
- **s** resolves $\Diamond \varphi$ iff *s* resolves some $\Diamond \psi$, where ψ is a proposition resolving φ .

Introduction	Data 000	Inquisitive existential modality O●O	Stack of local contexts
Example			

$$[\![\Diamond\varphi]\!]_{\mathsf{MInqB}} = \{ s \subseteq W \mid \exists s' \in [\![\varphi]\!]_{\mathsf{MInqB}}, s \subseteq \mathsf{R}^{-1}(s') \}$$
(5)

- (6) a. SITUATION : Students a and b had an exam supervised by Mary. Exactly one student cheated. One or both students may have cheated.
 - b. JOHN : Which student may have cheated?

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts
Example			

$$[\![\Diamond\varphi]\!]_{\mathsf{MIngB}} = \{ s \subseteq W \mid \exists s' \in [\![\varphi]\!]_{\mathsf{MIngB}}, s \subseteq \mathsf{R}^{-1}(s') \}$$
(5)

- (6) a. SITUATION : Students a and b had an exam supervised by Mary. Exactly one student cheated. One or both students may have cheated.
 - b. JOHN : Which student may have cheated?
 - Worlds $w_a^a, w_a^{ab}, w_b^{ab}, w_b^b$

Introduction	Data	Inquisitive existential modality	Stack of local contexts
000	000	○●○	
Example			

$$[[\Diamond \varphi]]_{\mathsf{MIngB}} = \{ s \subseteq W \mid \exists s' \in [[\varphi]]_{\mathsf{MIngB}}, s \subseteq \mathsf{R}^{-1}(s') \}$$
(5)

- (6) a. SITUATION : Students a and b had an exam supervised by Mary. Exactly one student cheated. One or both students may have cheated.
 - b. JOHN : Which student may have cheated?
 - Worlds $w_a^a, w_a^{ab}, w_b^{ab}, w_b^b$

 $[\exists x.cheated(x)]_{MinqB}$

Introduction	Data	Inquisitive existential modality	Stack of local contexts
000	000	○●○	
Example			

$$[\![\Diamond\varphi]\!]_{\mathsf{MIngB}} = \{ s \subseteq W \mid \exists s' \in [\![\varphi]\!]_{\mathsf{MIngB}}, s \subseteq \mathsf{R}^{-1}(s') \}$$
(5)

- (6) a. SITUATION : Students a and b had an exam supervised by Mary. Exactly one student cheated. One or both students may have cheated.
 - b. JOHN : Which student may have cheated?
 - Worlds $w_a^a, w_a^{ab}, w_b^{ab}, w_b^b$

 $[\exists x.cheated(x)]_{MinqB}$

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Example			

$$[[\Diamond \varphi]]_{\mathsf{MInqB}} = \{ s \subseteq W \mid \exists s' \in [[\varphi]]_{\mathsf{MInqB}}, s \subseteq \mathsf{R}^{-1}(s') \}$$
(5)

- (6) a. SITUATION : Students a and b had an exam supervised by Mary. Exactly one student cheated. One or both students may have cheated.
 - b. JOHN : Which student may have cheated?
 - Worlds $w_a^a, w_a^{ab}, w_b^{ab}, w_b^b$

R⁻¹ is widening the alternatives (*if* R *is an equivalence relation*)

Introduction	Data 000	Inquisitive existential modality ○●○	Stack of local contexts
Example			

$$[[\Diamond \varphi]]_{\mathsf{MInqB}} = \{ s \subseteq W \mid \exists s' \in [[\varphi]]_{\mathsf{MInqB}}, s \subseteq \mathsf{R}^{-1}(s') \}$$
(5)

- (6) a. SITUATION : Students a and b had an exam supervised by Mary. Exactly one student cheated. One or both students may have cheated.
 - b. JOHN : Which student may have cheated?
 - Worlds $w_a^a, w_a^{ab}, w_b^{ab}, w_b^b$

■ R⁻¹ is widening the alternatives (*if* R *is an equivalence relation*)

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts

Extension to dynamic inquisitive semantics

In GROENENDIJK, STOKHOF et VELTMAN 1996 (GSV),

- information state s: set of pairs $\langle w, g \rangle$ of world and assignment
- Projection to world-content : WC(s) = { $w \mid \exists \langle w, g \rangle \in s$ }

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts

Extension to dynamic inquisitive semantics

In GROENENDIJK, STOKHOF et VELTMAN 1996 (GSV),

- information state s: set of pairs $\langle w, g \rangle$ of world and assignment
- Projection to world-content : WC(s) = { $w \mid \exists \langle w, g \rangle \in s$ }

$$[\![\Diamond\varphi]\!]_{\mathsf{MGSV}} = s \mapsto \{\langle w, g \rangle \in s \mid w \in \mathsf{R}^{-1}(\mathsf{WC}([\![\varphi]\!]_{\mathsf{MGSV}}(s)))\}$$
(6)

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts

Extension to dynamic inquisitive semantics

In GROENENDIJK, STOKHOF et VELTMAN 1996 (GSV),

- information state s : set of pairs $\langle w, g \rangle$ of world and assignment
- Projection to world-content : WC(s) = { $w \mid \exists \langle w, g \rangle \in s$ }

$$[[\Diamond \varphi]]_{\mathsf{MGSV}} = s \mapsto \{ \langle w, g \rangle \in s \mid w \in \mathsf{R}^{-1}(\mathsf{WC}([[\varphi]]_{\mathsf{MGSV}}(s))) \}$$
(6)

Combining it all : Dynamic Inquisitive Semantics (DOTLAČIL et ROELOFSEN 2021)

$$\Diamond \mathcal{U} = \mathbf{c} \mapsto \{ \mathbf{s} \in \mathbf{c} \mid \exists \mathbf{s}' \in \mathcal{U}(\mathbf{c}). \ \mathsf{WC}(\mathbf{s}) \subseteq \mathsf{R}^{-1}(\mathsf{WC}(\mathbf{s}')) \}$$
(7)

Externally static

■ Similar to [\(\lapha\)\varphi]|_{MInqB}

Introduction	Data	Inquisitive existential modality	Stack of local contexts
000	000		●000
Pushing and perc	olating : intuition	IS	

Goal update of common ground :

might
$$\varphi$$
, would $\psi \quad \rightsquigarrow \quad \Diamond \varphi \land \Box(\varphi \to \psi)$ (8)

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Pushing and p	ercolating : ir	ntuitions	

Goal update of common ground :

might
$$\varphi$$
, would $\psi \quad \rightsquigarrow \quad \Diamond \varphi \land \Box(\varphi \to \psi)$ (8)

Bottom context = common ground c

$$\langle c \rangle$$

000	000	000	
Introduction	Data 000	Inquisitive existential modality	Stack of local contexts

Pushing and percolating : intuitions

Goal update of common ground :

might
$$\varphi$$
, would $\psi \quad \rightsquigarrow \quad \Diamond \varphi \land \Box(\varphi \to \psi)$ (8)

- Bottom context = common ground c
- Modal operators are :
 - Pushing a new local context
 - 2 Percolating the information

$$\langle \mathbf{C} \rangle \xrightarrow{\text{PUSH } \varphi} \left\langle \begin{array}{c} \mathbf{C}[\varphi] \\ \mathbf{C} \end{array} \right\rangle \xrightarrow{\text{PERC } \Diamond \varphi} \left\langle \begin{array}{c} \mathbf{C}[\varphi] \\ \mathbf{C}[\Diamond \varphi] \end{array} \right\rangle$$

$$\underset{\textit{might } \varphi/\text{could } \varphi}{\text{might } \varphi/\text{could } \varphi}$$

Introduction	Data	Inquisitive existential modality	Stack of local contexts

Pushing and percolating : intuitions

Goal update of common ground :

might
$$\varphi$$
, would $\psi \quad \rightsquigarrow \quad \Diamond \varphi \land \Box(\varphi \to \psi)$ (8)

- Bottom context = common ground c
- Modal operators are :
 - Pushing a new local context
 - 2 Percolating the information

$$\begin{array}{c} (c) \xrightarrow{\text{PUSH } \varphi} \left\langle \begin{array}{c} C[\varphi] \\ c \end{array} \right\rangle \xrightarrow{\text{PERC } \Diamond \varphi} \left\langle \begin{array}{c} C[\varphi] \\ c[\Diamond \varphi] \end{array} \right\rangle \\ \xrightarrow{\text{might } \varphi/\text{could } \varphi} \\ \\ \underbrace{\begin{array}{c} \\ \end{array} \xrightarrow{\text{PUSH } \psi} \left\langle \begin{array}{c} C[\varphi][\psi] \\ C[\varphi] \\ c[\varphi] \end{array} \right\rangle \xrightarrow{\text{PERC } \psi} \left\langle \begin{array}{c} C[\varphi][\psi] \\ C[\varphi][\psi] \\ c[\varphi][\psi] \\ c[\Diamond \varphi] \end{array} \right\rangle \xrightarrow{\text{Would } \psi} \end{array} \right\rangle$$

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Example : setting			

(7) a. Which^{*u*} letter could be hidden in FO_M?

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts
Example : setting			

- Functional heads Type (here : Int) and Focus
- could rises to spec FocusP
- (7) a. Which^{*u*} letter could be hidden in FO_M?
 - b. Int (*could* (Foc_u (*which^u letter hidden*)))

(Mari & Giannakidou p.c.)

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts O●OO
Example : setting			

- Functional heads Type (here : Int) and Focus
- could rises to spec FocusP

(Mari & Giannakidou p.c.)

- (7) a. Which^{*u*} letter could be hidden in FO_M?
 - b. Int (*could* (Foc_u (*which^u letter hidden*)))
 - c. $\mathcal{T} = \dagger$ (PUSH \mathcal{V} ; PERC $\Diamond \mathcal{V}$), with

 $\mathcal{V} = [u]$; letter{u}; hidden{u}; atom{u}; max{u}; ?u

Introduction	D	ata 1000	Inquisitive existenti	al modality		Stack of local contexts
Example : setting						
Function	onal head	s Type (here : Int	t) and Focus			
could ı	rises to sp	ec FocusP		(Mari & 0	Giannakic	lou p.c.)
 (7) a. Which^u letter could be hidden in FO_M? b. Int (<i>could</i> (Foc_u (<i>which^u letter hidden</i>))) c. T = †(PUSH V; PERC ◊V), with V = [u]; letter{u}; hidden{u}; atom{u}; max{u};?u 						
World w	w _A ^A	W _A *	w _{RU}	w _R *	w_R^R	w _{RU}
Words with skeleton FO_M in English	FOAM	FOAM, FORM, FORUM	FOAM, FORM, FORUM	FOAM, FORM, FORUM	FORM	FORUM
Actual word on the board	FOAM	FOAM	FORUM	FORM	FORM	FORUM
Accessible worlds	$\{w_A^A\}$	$\{w_{A}^{*}, w_{R}^{*}, w_{RU}^{*}\}$	$\{w_{A}^{*}, w_{R}^{*}, w_{RU}^{*}\}$	$\{w_{A}^{*}, w_{R}^{*}, w_{RU}^{*}\}$	$\{w_R^R\}$	$\{w_{RU}^{RU}\}$

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts
Example : ap	plication		

(8)
$$\mathcal{T} = \dagger(\mathsf{PUSH} \ \mathcal{V}; \mathsf{PERC} \ \Diamond \mathcal{V}), \text{ with } \mathcal{V} = [u]; \mathsf{letter}\{u\}; \mathsf{hidden}\{u\}; \mathsf{atom}\{u\}; \mathsf{max}\{u\}; ?u$$

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Example : a	pplication		
(8) <i>T</i> =	$(PUSH \mathcal{V}; PERC \Diamond \mathcal{V})$), with	

$$\mathcal{V} = [u]$$
; letter $\{u\}$; hidden $\{u\}$; atom $\{u\}$; max $\{u\}$; ?u

$$\begin{pmatrix} c_{0}: \ \ \end{bmatrix} & \underbrace{w_{A}^{A} \ w_{A}^{*} \ w_{RU}^{*} \ w_{R}^{*} \ w_{RU}^{*} \ w_{R}^{*} \ w_{RU}^{*} \$$

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Example : ap	plication		

(8)
$$\mathcal{T} = \dagger(\mathsf{PUSH} \mathcal{V}; \mathsf{PERC} \Diamond \mathcal{V}), \text{ with}$$

 $\mathcal{V} = [u]; \text{ letter}\{u\}; \text{ hidden}\{u\}; \text{ atom}\{u\}; \text{ max}\{u\}; ?u$

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Example : a	pplication		
(0) τ		ith	

(8)
$$\mathcal{T} = \dagger(\mathsf{PUSH}\ \mathcal{V}; \mathsf{PERC}\ \Diamond\mathcal{V}), \text{ with}$$

 $\mathcal{V} = [u]; \mathsf{letter}\{u\}; \mathsf{hidden}\{u\}; \mathsf{atom}\{u\}; \mathsf{max}\{u\}; ?u$

$$\begin{pmatrix} c_{0}: \ \ \\ & & \\$$

Introduction 000	Data 000	Inquisitive existential modality	Stack of local contexts ○○●○
Example : a	oplication		

(8)
$$\mathcal{T} = \dagger(\mathsf{PUSH} \mathcal{V}; \mathsf{PERC} \Diamond \mathcal{V}), \text{ with}$$

 $\mathcal{V} = [u]; \mathsf{letter}\{u\}; \mathsf{hidden}\{u\}; \mathsf{atom}\{u\}; \mathsf{max}\{u\}; \mathbf{?u}$

$$\begin{pmatrix} c_{0} : [] & \underbrace{w_{A}^{A} \ w_{A}^{*} \ w_{RU}^{*} \ w_{R}^{*} \ w_{RU}^{*} \ w_{RU}$$

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Example : a	oplication		

(8)
$$\mathcal{T} = \dagger(\text{PUSH } \mathcal{V}; \text{PERC } \Diamond \mathcal{V})$$
, with
 $\mathcal{V} = [u]; \text{letter}\{u\}; \text{hidden}\{u\}; \text{atom}\{u\}; \max\{u\}; ?u$

$$\begin{pmatrix} c_{0} : [] & \underbrace{w_{A}^{A} \ w_{A}^{*} \ w_{RU}^{*} \ w_{R}^{*} \ w_{RU}^{*} \ w_{R}^{*} \ w_{RU}^{*} \ w_$$

Introduction	Data 000	Inquisitive existential modality	Stack of local contexts
Example : ap	oplication		

(8)
$$\mathcal{T} = \dagger(\mathsf{PUSH} \ \mathcal{V}; \operatorname{PERC} \Diamond \mathcal{V})$$
, with
 $\mathcal{V} = [u]; \operatorname{letter}\{u\}; \operatorname{hidden}\{u\}; \operatorname{atom}\{u\}; \max\{u\}; ?u$

- † : presupposition of non-informativeness
- Global presupposition obviated : c₀ can include w^{*}_{BU}
- Local presupposition : c₀ must exclude w^{RU}_{RU}

Conclusion

Modal Dynamic Inquisitive Semantics

- Weakening of exhaustivity
- Weakening of uniqueness presupposition
- Externally static ◊
- Capturing modal subordination
- Uniform treatment of modalized questions and conditional questions

Future prospects :

Enable irrealis mood

- (9) a. SITUATION : Mary would like to experiment with two or three patients with eczema. She asks Ann, who knows the medical files of all patients with skin conditions in the hospital, a question.
 - b. Which patients have eczema?
 - c. Which patients could I invite for my experiment?

Formulas

Pushing and percolating :

$$\begin{array}{lll} \mathsf{PUSH}\,\mathcal{U} := & \lambda \langle c_0, ..., c_n \rangle. \, \langle c_0, ..., c_n, \mathcal{U}(c_n) \rangle \\ \mathsf{PERC}\,\mathcal{U} := & \lambda \langle c_0, ..., c_{n-2}, c_{n-1}, c_n \rangle. \, \langle c_0[c_{n-1} \vdash \mathcal{U}], ..., c_{n-2}[c_{n-1} \vdash \mathcal{U}], \mathcal{U}(c_{n-1}), c_n \rangle \\ \end{array}$$

$$\begin{array}{ll} (9) \end{array}$$

 $\begin{aligned} \mathsf{KAUFMANN} & 2000's \text{ percolation} : c[c' \vdash \mathcal{U}] = (\Box(c' \to \mathcal{U}))(c) : \\ \text{``Learning in } c \text{ that if } c' \text{ then } \mathcal{U}(c') \text{''} \\ c' \to \mathcal{U} := \quad c \mapsto \{s \in c \mid \forall t \subseteq s. \forall t' \in c'. t \sqsubseteq t' \to t' \in \mathcal{U}(c')\} \\ \Box \mathcal{U} := \quad c \mapsto \{s \in c \mid \exists s' \in \mathcal{U}(c). \forall \langle w, g \rangle \in s. \forall w'. w \ R \ w' \to \langle w', g \rangle \in s'\} \end{aligned}$ (10)

Extension and subsistence :

Presupposition operator :

$$\dagger S := \tau \mapsto \begin{cases} S(\tau) & \text{if } \forall i < |\tau|. \ \bigcup \tau_i \sqsubseteq \bigcup S(\tau)_i \\ \text{undefined} & \text{otherwise} \end{cases}$$
(12)

- \blacksquare KRATZER 1991's modal base f and ordering source ω
- Restrictor context c_r (for irrealis mood)
- Modal structure $\eta = \langle f, \omega, c_r \rangle$
- Ideal elements at w : Ideal_{$\omega(w)$}(($\bigcup c_r$) \cap ($\bigcap f(w)$)) $\subseteq W$

Possibility function :

$$\mathbb{P}_{\langle f,\omega,c_r\rangle}(s) := \{ w \in W \mid s \cap \mathsf{Ideal}_{\omega(w)}((\cup c_r) \cap (\bigcap f(w))) \neq \emptyset \}$$

$$[[\Diamond_\eta \varphi]]_{\mathsf{int}} = \mathbb{P}_{\eta}([[\varphi]]_{\mathsf{int}})$$
(13)

Extending Modal Inq_B^D :

$$\Diamond_{\eta} \mathcal{U} := \boldsymbol{c} \mapsto \{ \boldsymbol{s} \in \boldsymbol{c} \mid \exists \boldsymbol{s}' \in \mathcal{U}(\boldsymbol{c}_{\boldsymbol{r}}^{\eta}). \ \mathsf{WC}(\boldsymbol{s}) \subseteq \mathbb{P}_{\eta}(\mathsf{WC}(\boldsymbol{s}')) \}$$
(14)